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Abstract

We construct two new exactly solvable potentials giving rise to bound-state
solutions to the Schrödinger equation, which can be written in terms of
the recently introduced Laguerre- or Jacobi-type X1 exceptional orthogonal
polynomials. These potentials, extending either the radial oscillator or the Scarf
I potential by the addition of some rational terms, turn out to be translationally
shape invariant as their standard counterparts and isospectral to them.

PACS numbers: 03.65.Fd, 03.65.Ge

Classical orthogonal polynomials are known to play a fundamental role in the construction of
bound-state solutions to exactly solvable potentials in quantum mechanics. For such a purpose,
the factorization method [1, 2] and its realization in supersymmetric quantum mechanics
(SUSYQM) [3], especially for shape-invariant potentials [4], as well as the equivalent Darboux
transformation [5], prove very useful. The same is true for a more traditional approach, the
point canonical transformation (PCT) method [6], consisting in directly mapping Schrödinger
equations into the second-order differential equations satisfied by those polynomials.

On the other hand, bound-state solutions to exactly solvable potentials are by no way
restricted to classical orthogonal polynomials. For instance, SUSYQM [7–10] and the Darboux
transformation [11–13] are very efficient at producing new sophisticated exactly solvable
potentials by adding or deleting some states or else by leaving the spectrum unchanged. The
PCT method is also very powerful for generating new shape-invariant or non-shape-invariant
potentials not only in a standard context [15], but also in more general ones, such as those
of quasi-exact [16] or conditionally-exact [17] solvability and those of position-dependent
masses [18].

Very recently, two new families of exceptional orthogonal nth-degree polynomials,
P̂

(α,β)
n (x) and L̂(α)

n (x), n = 1, 2, 3, . . . , have been introduced [19, 20]. Such sequences,
referred to as Jacobi- or Laguerre-type X1 polynomials, respectively, arise as solutions of
second-order eigenvalue equations with rational coefficients. They are characterized by the
remarkable property that although they do not start with a constant but with a linear polynomial,

1751-8113/08/392001+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/39/392001
http://stacks.iop.org/JPhysA/41/392001


J. Phys. A: Math. Theor. 41 (2008) 392001 Fast Track Communication

they form complete sets with respect to some positive-definite measure in contrast with what
would happen if one deleted their first member from the families of classical orthogonal
polynomials.

In this communication, we plan to show that there exist some exactly solvable potentials
whose bound-state wavefunctions can be written in terms of these new exceptional orthogonal
polynomials. For such a purpose, we shall make use of the standard PCT method. In a second
step, we shall employ SUSYQM techniques to prove that our new exactly solvable potentials
are transitionally shape invariant.

In the PCT method, one looks for solutions of the Schrödinger equation,

Hψ(x) ≡
(

− d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (1)

of the form

ψ(x) = f (x)F (g(x)), (2)

where f (x), g(x) are two so far undetermined functions and F(g) satisfies a second-order
differential equation

F̈ + Q(g)Ḟ + R(g)F = 0. (3)

Here a dot denotes derivative with respect to g.
On inserting equation (2) into equation (1) and comparing the result with equation (3), one

arrives at two expressions for Q(g(x)) and R(g(x)) in terms of E − V (x) and of f (x), g(x)

and their derivatives. The former allows one to calculate f (x), which is given by

f (x) ∝ 1√
g′ exp

(
1

2

∫ g(x)

Q(u) du

)
, (4)

while the latter leads to the equation

E − V (x) = g′′′

2g′ − 3

4

(
g′′

g′

)2

+ g′2
(

R − 1

2
Q̇ − 1

4
Q2

)
. (5)

In (4) and (5), a prime denotes derivative with respect to x. For equation (5) to be satisfied, one
needs to find some function g(x) ensuring the presence of a constant term on its right-hand side
to compensate E on its left-hand one, while giving rise to a potential V (x) with well-behaved
wavefunctions.

Let us start by considering for (3) the second-order differential equation satisfied by
Laguerre-type X1 polynomials L̂(α)

n (x), n = 1, 2, 3, . . . , α > 0. In such a case, the functions
Q(g) and R(g) can be expressed as [19, 20]

Q(g) = − (g − α)(g + α + 1)

g(g + α)
= −1 +

α + 1

g
− 2

g + α
,

R(g) = 1

g

(
g − α

g + α
+ n − 1

)
= n − 2

g
+

2

g + α
,

so that we obtain

R − 1

2
Q̇ − 1

4
Q2 = −1

4
+

2αn + α2 − α + 2

2αg
− 1

α(g + α)
− (α + 1)(α − 1)

4g2
− 2

(g + α)2
.

(6)

A constant term can be generated on the right-hand side of equation (5) by assuming
g′2/g = C, which can be achieved by taking g(x) = 1

4Cx2. Equations (5) and (6) then yield

E = 1

2
C(2n + α − 1),

V (x) = 1

16
C2x2 +

(
α − 1

2

)(
α + 1

2

)
x2

+
4C

Cx2 + 4α
− 32Cα

(Cx2 + 4α)2
.

2



J. Phys. A: Math. Theor. 41 (2008) 392001 Fast Track Communication

On setting

C = 2ω, α = l + 1
2 , n = ν + 1,

we arrive at

Eν = ω
(
2ν + l + 3

2

)
, ν = 0, 1, 2, . . . , (7)

and
V (x) = V1(x) + V2(x),

V1(x) = 1

4
ω2x2 +

l(l + 1)

x2
,

V2(x) = 4ω

ωx2 + 2l + 1
− 8ω(2l + 1)

(ωx2 + 2l + 1)2
.

(8)

For

0 < x < ∞, ω > 0, l = 0, 1, 2, . . . ,

V (x) is a well-behaved potential, which may be interpreted as an l-dependent (effective)
potential, extending the standard radial oscillator potential V1(x) by the addition of some
rational terms. Such terms do not change the behaviour of the conventional potential for large
values of x, while for small values they have only a drastic effect when the angular momentum
l vanishes, in which case V (0) = −4ω < 0 instead of V (0) = 0.

From equation (7), it follows that the extended potential has the same spectrum as the
standard one. The corresponding wavefunctions can be found from equations (2) and (4). On
solving the latter for the choices made here for Q(g) and g(x), we get

ψν(x) = N ν

xl+1

ωx2 + 2l + 1
L̂

(l+ 1
2 )

ν+1

(
1

2
ωx2

)
e− 1

4 ωx2
,

where the normalization constant is obtained from equations (31), (33) and (34) of [19] as

Nν =
(

ωl+ 3
2 ν!

2l− 3
2
(
ν + l + 3

2

)
�

(
ν + l + 1

2

)
)1/2

.

In particular, the ground-state wavefunction can be written as

ψ0(x) ∝ ψ10(x)[1 + φ(x)], ψ10(x) ∝ xl+1 e− 1
4 ωx2

, φ(x) = 2

ωx2 + 2l + 1
(9)

and differs from that of the standard radial oscillator, ψ10(x), by the extra factor 1 + φ(x). It
is obvious that it is a zero-node function on the half line, as it shoud be. Furthermore, it can
easily be checked by direct calculation that it satisfies equation (1) for the potential (8) and
E0 = ω

(
l + 3

2

)
.

More generally, as shown in [20], the polynomial L̂
(l+ 1

2 )

ν+1

(
1
2ωx2

)
(and hence the

wavefunction ψν(x)) has ν zeros on the half line. From general properties of the one-
dimensional Schrödinger equation, it therefore results that we have found all the eigenvalues
of potential (8).

Let us next consider the case where the second-order differential equation (3) coincides
with that satisfied by Jacobi-type X1 polynomials P̂

(α,β)
n (x), n = 1, 2, 3, . . . , α, β > −1, α �=

β [19, 20], i.e.,

Q(g) = − (β + α + 2)g − (β − α)

1 − g2
− 2(β − α)

(β − α)g − (β + α)
,

R(g) = − (β − α)g − (n − 1)(n + β + α)

1 − g2
− (β − α)2

(β − α)g − (β + α)
.

3
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This choice leads to

R − 1

2
Q̇ − 1

4
Q2 = Cg + D

1 − g2
+

Gg + J

(1 − g2)2
+

K

(β − α)g − (β + α)
+

L

[(β − α)g − (β + α)]2
,

where

C = (β − α)(β + α)

2αβ
, D = n2 + (β + α − 1)n +

1

4
[(β + α)2 − 2(β + α) − 4] +

β2 + α2

2αβ
,

G = 1

2
(β − α)(β + α), J = −1

2
(β2 + α2 − 2),

K = (β − α)2(β + α)

2αβ
, L = −2(β − α)2.

We can obtain a constant term on the right-hand side of (5) by assuming g′2/(1−g2) = C̄.
For C̄ = a2 > 0, we can take g(x) = sin(ax). On rescaling the variable x, the parameter a
can be set equal to 1. Then with the changes of parameters and of quantum number

α = A − B − 1
2 , β = A + B − 1

2 or A = 1
2 (β + α + 1),

B = 1
2 (β − α), n = ν + 1,

we arrive at the following results:

Eν = (ν + A)2, ν = 0, 1, 2, . . . , (10)

and
V (x) = V1(x) + V2(x),

V1(x) = [A(A − 1) + B2] sec2 x − B(2A − 1) sec x tan x,

V2(x) = 2(2A − 1)

2A − 1 − 2B sin x
− 2[(2A − 1)2 − 4B2]

(2A − 1 − 2B sin x)2
.

(11)

The function V1(x) defines a Scarf I potential, for which it is customary to assume

−π

2
< x <

π

2
, 0 < B < A − 1.

For such values of the variable and parameters, the full potential V (x) has the same behaviour
as V1(x) for x → ±π/2, only the position and the value of the minimum being modified.

It results from (10) that on using as usual Dirichlet boundary conditions at the end points
of the interval the extended Scarf I potential (11) has the same spectrum as the conventional
one. Its wavefunctions can be written as

ψν(x) = Nν

(1 − sin x)
1
2 (A−B)(1 + sin x)

1
2 (A+B)

2A − 1 − 2B sin x
P̂

(A−B− 1
2 ,A+B− 1

2 )
ν+1 (sin x),

where the normalization constant

Nν = B

2A−2

(
ν!(2ν + 2A)�(ν + 2A)(

ν + A − B + 1
2

) (
ν + A + B + 1

2

)
�

(
ν + A − B − 1

2

)
�

(
ν + A + B − 1

2

)
)1/2

is a consequence of equations (23), (25) and (26) of [19].
The ground-state wavefunction assumes the simple form

ψ0(x) ∝ ψ10(x)[1 + φ(x)], ψ10(x) ∝ (1 − sin x)
1
2 (A−B)(1 + sin x)

1
2 (A+B),

φ(x) = 2

2A − 1 − 2B sin x
,

(12)

where the presence of φ(x) is due to the rational terms in V2(x). As in the previous case,
the function ψ0(x) has no node on the interval of variation of x and can easily be checked to
satisfy equation (1).

4
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More generally, the polynomial P̂
(A−B− 1

2 ,A+B− 1
2 )

ν+1 (sin x) (and hence the wavefunction
ψν(x)) has ν zeros on

(−π
2 , π

2

)
[20], so that no other eigenvalues than (10) may exist for

potential (11).
Let us finally combine our results with SUSYQM methods [7–10]. In the minimal

version of SUSY, the supercharges Q and Q† are generally assumed to be represented by
Q = Aσ−,Q† = A†σ+, where σ± are combinations σ± = σ1 ± iσ2 of the Pauli matrices and
A,A† are taken to be first-derivative differential operators, A = d

dx
+W(x),A† = − d

dx
+W(x),

with W(x) known as the superpotential. The supersymmetric Hamiltonian Hs = {Q,Q†} is
diagonal, i.e., Hs = diag(H (+), H (−)), and its components H(±) can be written in factorized
form in terms of A and A†,

H(+) = A†A = − d2

dx2
+ V (+)(x) − E, H(−) = AA† = − d2

dx2
+ V (−)(x) − E,

at some arbitrary factorization energy E. The partner potentials V (±)(x) are related to W(x)

through V (±)(x) = W 2(x) ∓ W ′(x) + E.
The spectrum of Hs is doubly degenerate except possibly for the ground state. In the exact

SUSY case to be considered here, the ground state at vanishing energy is nondegenerate. In
the present notational set-up, it belongs to H(+),

H(+)ψ
(+)
0 (x) = 0, ψ

(+)
0 (x) ∝ exp

(
−

∫ x

W(t) dt

)
.

Let us identify V (+)(x) with either the extended radial oscillator potential (8) or the
extended Scarf I potential (11) and take for the factorization energy E0 = ω

(
l+ 3

2

)
or E0 = A2,

respectively. Then ψ
(+)
0 (x) is given by equation (9) or equation (12). The corresponding

superpotential W(x) = −ψ ′
0(x)/ψ0(x) can be separated into two parts,

W(x) = W1(x) + W2(x), W1(x) = −ψ ′
10

ψ10
, W2(x) = − φ′

1 + φ
,

where W1(x) is the superpotential for the conventional potential, i.e.,

W1(x) = 1

2
ωx − l + 1

x
or W1(x) = A tan x − B sec x,

and the additional term W2(x) can be written as

W2(x) = 2ωx

(
1

ωx2 + 2l + 1
− 1

ωx2 + 2l + 3

)
or

W2(x) = −2B cos x

(
1

2A − 1 − 2B sin x
− 1

2A + 1 − 2B sin x

)
,

respectively.
From this, it follows that the partner potential V (−)(x) to V (+)(x) (with one less eigenvalue)

is given by

V (−)(x) = V (+)(x) + 2W ′(x) = V
(−)

1 (x) + V
(−)

2 (x),

V
(−)
i (x) = V

(+)
i (x) + 2W ′

i (x), i = 1, 2.

As is well known, V
(−)

1 (x) is a standard radial oscillator (resp. Scarf I) potential with l
replaced by l + 1 (resp. A replaced by A + 1). It is straightforward to convince oneself that a
similar property relates V

(−)
2 (x) with V

(+)
2 (x). We therefore conclude that the two extended

potentials (8) and (11) are translationally shape invariant as their conventional counterparts.

5
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Summarizing, we have constructed some exactly solvable potentials for which the
recently introduced Laguerre- or Jacobi-type X1 exceptional orthogonal polynomials play
a fundamental role. Furthermore, we have demonstrated that these new potentials are shape
invariant. It is rather obvious that the method described here could be used for other choices
of the function g(x) in order to generate other types of potentials connected with such
polynomials. Another interesting open question for future work would be the origin of
the (strict) isospectrality observed between the extended and conventional potentials.
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